Case #1: For a neuropathic foot ulcer, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols and the DTI area decreased and open areas resolved.

Case #2: In a patient with Incontinence Associated Dermatitis (IAD), a SFR garment device (GlideWear® Shear Protection Underwear) was used in addition to all normal wound care protocols. The patient had recurrent IAD for one year and was never able to maintain intact skin until using SFR underwear, which was applied over the diaper. IAD is resolved with no recurrence for 8 months while using the SFR underwear.

Limitations
Compliance with the products.

Discussion/Conclusions
As clinicians, we have implemented interventions to eliminate or reduce friction and shear in our practices. These interventions have been limited to reducing friction when moving patients onto or off of a seat or bed support surface by instructing the patient and caregivers to avoid dragging and to lift when transferring and by suggesting the use of transfer aids. There are low friction transfer aids available and they work well for assisting transfers, but are not functional as a contact loading solution. Transfer aids are expressly task-oriented and should not be left in place while a person is sitting or lying for stability/safety reasons. However, we have not had a product that uses SFR technology for contact loading available to us until now. We have four case studies with very different wound etiologies that had dramatic improvement in very short periods of time when intervening with this simple technology.

I believe that we have underestimated the effect friction has on the wound healing process. There have never been products, until now, that directly reduce the friction when sitting or lying. The principal theory behind SFR recognizes two things. 1. Friction is the force, coupled with pressure, that results in shear stress (distortion) in tissue. Both forces always present, pressure and friction, are available to mitigate. 2. Applying a low friction surface instrumenting the area of the body where skin damage is, or is at risk of occurring, preserves the otherwise helpful friction in the other areas where skin can tolerate the forces and derive stabilizing benefits or traction. The interface may be worn by the patient, or function as a component of a support surface cover. The SFR approach should not be thought of as a way to transfer to perform a transfer more easily, however, SFR provides very important protection during transfers if worn by the patient.

Micromotion is another pressure injury causal factor that deserves to be recognized and mitigated, whenever it is a practical possibility, to facilitate air exchange to help control moisture and temperature on the skin surface at the interface. The SFR technology used with these cases has properties friendly to micromotion issues. Therefore, the negative effect of friction has never been fully appreciated until the SFR products were utilized in conjunction with our current standards of practice in wound care.

I have found that the SFR devices are a crucial intervention to the wound healing process. The response that was demonstrated in these cases has been reproduced numerous times in my clinical practice and the technology will become part of our standard of practice when dealing with pressure injury and Incontinence Associated Dermatitis.

The Technology
Friction causes shear stress in the load-bearing tissue, and along with pressure and microclimate, is known to cause skin damage. GlideWear®, a dual ply textile technology, places a very low friction interface into a specific portion of a garment, support surface cushion cover or as a prosthetic liner component. This technology employs a concept referred to as “Strategic Friction Reduction” (SFR). SFR targets friction reduction to only the wound area, or the area known to be at-risk, providing a more favorable healing and prevention environment. Targeting the area of reduced friction preserves the relatively higher normal friction loads in the other areas where skin can tolerate the stress. This is necessary for maintaining positioning, stability, and traction.

Applications using Strategic Friction Reduction (SFR) technology include:
- Stockings with forefoot, partial foot, or heel/ankle low friction technology installed in at-risk areas
- Undergarments with low friction technology installed in at-risk areas
- Wheelchair cushion covers with low friction technology installed in at-risk areas
- Trans-tibial prosthetic liner patches and trans-femoral prosthesis brim sheaths
- Pillowcase component

For Neuropathic Foot Conditions, Amputees, Wheelchair Users, Bed Surface Users, IAD, and other conditions where support surfaces are necessary.

References:

Acknowledgements & Contact
No external funding was received for this research. The investigators retained full independence in the conduct of this research. Low Friction Fabric interventions and custom made socks were received as free trial from Tamarack Habilitation Technologies, Inc.

Contact all authors at Tamarack Habilitation Technologies, Inc.
1670-54th Lane NE, Minneapolis, MN 55449
Email: info@tamarackhi.com

Using Strategic Friction Reduction to Prevent and Treat Pressure Injuries

By: Sheila Howes-Trammel
MSN, APRN, FNP-BC,
CWCN, CCN, CFN, CLNC
Hennepin County Medical Center

Abstract
Evidence suggests that friction causes stress and strains in the tissue of users exposed to prolonged sessions on support surfaces such as wheelchairs and mattresses, leading to increased risk of skin trauma at the surface and in deep tissues. New solutions are needed since simply addressing the ‘pressure factor’ is incomplete. Due to the shearing stress and strain (distortion) that friction causes it is a significant contributor to skin trauma. Despite the many products focused on pressure management, there are currently very few interventions addressing friction and shear. This presentation highlights a promising new intervention.

Strategic Friction Reduction (SFR) is the deliberate placement of ultra-low friction interface materials to target those areas with wounds or those at risk. SFR interface materials can be built into a user’s garment (such as a sock or underwear) which covers the at-risk zone, or into an external surface such as a wheelchair cushion, or a bed liner. SFR manages contact forces in much the same way as do for pressure. These contact forces may be from positioning or sliding support equipment, from beds or other devices, and are also present during any and all transfers. Individuals might not remain in their ideal chairs all at times – what happens to them when they are sitting or other support surfaces such as in a vehicle? Practitioners and users are challenged to reduce the harmful friction and shear forces from these surfaces as well.

This presentation discusses how a new SFR technology works and will discuss the positive effect when using these interventions to reduce friction in four case study examples: Deep tissue Injury, Incontinence Associated Dermatitis (IAD), neuropathic ulcer and toe pressure ulcer.

Background
Friction causes shear stress and strain in the load-bearing tissue and leads to increased risk of skin trauma – both at the surface and in deep tissues1. Wound care protocols do not currently include any means for reducing friction other than to suggest avoiding dragging or sliding across surfaces2. The few interventions that clinicians are aware of address friction and shear are intended for assisting transfers. The author found a new dual ply textile friction reducing technology having an extremely low static coefficient of friction (CoF) located in a specific portion of a garment, cushion cover or a prosthetic socket component. This technology employs a concept referred to as “Strategic Friction Reduction” (SFR). SFR targets the wound area, or the area known to be at-risk, and reduces local friction only in that area. This preserves neighboring friction reducing benefits which cause harm to the skin and are needed for traction and stability. Because devices and support surfaces function to manage pressure, they should also manage friction to reduce shear stress on the skin and extending into the deeper tissues.

Methods
Strategic Friction Reduction (SFR) devices were employed in addition to all usual wound treatment protocols in 4 subjects;

Case #1 - For a deep tissue injury (DTI) with Stage 2 open areas on the buttocks, a SFR seat cushion cover (GlideWear® Shear Protection Wheelchair Cushion Cover) was used over a commonly used pneumatic seat cushion in addition to all normal wound care protocols

Case #2 - For a right neuropathic foot ulcer, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols

Case #3 - For a pressure injury on the left hallux II, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols

Case #4 - For Incontinence Associated Dermatitis (IAD), a SFR garment device (GlideWear® Shear Protection Underwear) was used in addition to all normal wound care protocols

If you're interested in learning more about conference proceedings or presentations, you can check out the collection of conference abstracts at the University of Minnesota. These abstracts provide a comprehensive overview of the latest research in various fields. Additionally, you can explore the University of Minnesota's online resources to gain insights into the latest developments in academic research and industry trends.
Case #1 Deep Tissue Injury/Stage 2 Pressure Injury

RS is a 85 y.o. man who resides in a nursing home. He has a history of Bipolar, Dementia with behaviors refusal of care to include bathing and peri-care by the staff. He has a recliner which is what he sits in all day and sleeps in at night. He gets out of the chair to take himself to the bathroom and to meals in the dining room. He has a good appetite averaging about 75% of his meals. He is continent of bowel and bladder. He had refused cares for about one week when the DTI was noted by the nursing assistant. He had no recent change in condition. After one month this DTI did not make any progress and then developed Stage 2 open areas. RS has never complained of pain in this area. BMI 38.4, PreAlbumin: 26.3, Braden Scale 16, Hgb 9.5

The facility staff, OT, PT, PNP, and WOC nurse had modified the seating cushion to be providing pressure reduction when the DTI developed. The cushion was checked everyday by staff when the patient left the room to go to the dining room. The GlideWear® Shear Protection Cushion Cover was obtained in an attempt to prevent further breakdown. There were no other new interventions attempted at that same time.

Wound Measures:

- Left: 10.5 cm X 8.5 cm, open 2.0 cm X 1.0 cm
- Right: 10.3 cm X 8.5 cm, open 2.0 cm X 1.0 cm

Intervention:

- GlideWear® Shear Protection Socks
- Cushion Cover

Results:

- The wound was not improving for 1 month so he had a vascular consult to determine the wound healing capability.
- The implementation of the GlideWear® sock was started on this day with the continuation of the current wound treatment.

Wound Measures:

- Left: 10.5 cm X 8.5 cm, no open areas
- Right: 0.8 cm X 0.9 cm X 0.2 cm

Results:

- There was a decrease in the deep purple area and resolution of the open areas in two weeks.

Case #2 Neuropathic Ulcer

JT is a 68 y.o. nursing home resident that developed this wound after his toe hit a table when he was being moved in his geri-chair. He has Type 2 Diabetes, CVA with aphasia and right side paresis. He does have sensation in his legs/feet and is able to respond to pain by pulling his foot away. Appetite is 75%, HgbA1C 6.2, PreAlbumin: 17.8, Weight 205.4 lbs, Braden Scale 13

Case #2 Neuropathic Ulcer

Intervention:

- GlideWear® Forefoot Socks
- Shear Protection Socks

Wound Measures:

- 0.8 cm X 0.6 cm one week after the GlideWear® sock was being used daily.

Results:

- There is an increase in granulation tissue. Decreased depth and increased epidermalization on wound edges.

Case #3 Pressure Injury

SY is a 68 y.o. male who resides in a nursing home. He has a history of CVA with dysphagia, COPD, Bipolar. Dementia. SY is bed bound, has a G-Tube for tube feedings. Incontinent of bowel and bladder. He has had a non-healing pressure injury on his Left great toe. SY had recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet. ABI 1.1, pulses +¼, diminished hair growth, capillary filling time < 3 seconds, TCO2 adequate for healing. BMI 38.4, PreAlbumin: 26.3, Braden Scale 16, Hgb 9.5

The facility staff, OT, PT, PNP, and WOC nurse had modified the seating cushion to be providing pressure reduction when the DTI developed. The cushion was checked everyday by staff when the patient left the room to go to the dining room. The GlideWear® Shear Protection Cushion Cover was obtained in an attempt to prevent further breakdown. There were no other new interventions attempted at that same time.

Wound Measures:

- 3 cm X 1.2 cm

Intervention:

- GlideWear® Forefoot Shear Protection Socks

Results:

- The wound was not improving for 1 month so he had a vascular consult to determine the wound healing capability.
- The implementation of the GlideWear® sock was started on this day with the continuation of the current wound treatment.

Wound Measures:

- 0.8 cm X 0.7 cm

Results:

- There was a decrease in the deep purple area and resolution of the open areas in two weeks.

Case #4 Incontinence Associated Dermatitis

AH is a 44 y.o. male nursing home patient that has a history of Status Epilepticus, Seizure disorder, Herpes Encephalitis, Encephalopathy. He has G-Tube for tube feeding. He is Incontinent of bowel and bladder. AH sits in a geri-chair for 1-2 hours at a time and then has mattresses on the floor due to constant moving and crawling. Most of the day he is in constant movement back and forth while in his chair and on the mattress. He responds to pain but does not communicate verbally. The IAD was a very painful condition for this patient. He would cry with skin care treatments and often become combative because of the pain when he was sitting in the chair. He required pain medications during his shower due to the pain.

BMI 19, Weight 137, PreAlbumin: 40, Braden Scale 14, Hgb 15.1

Intervention:

- GlideWear® Forefoot Shear Protection Underwear

Wound Measures:

- 3 cm X 1.2 cm

Results:

- A pair of SFH underwear was placed over his diaper and used 24/7. The IAD resolved in 1 week and the skin condition of IAD has had no recurrence for 3 months. This is a picture of his skin 5 months later.

Case #5 Pressure Injury

RS is a 68 y.o. man who resides in a nursing home. He has a history of CVA with dysphagia, COPD, Bipolar, Dementia. SY is bed bound, has a G-Tube for tube feedings. Incontinent of bowel and bladder. He has had a non-healing pressure injury on his Left great toe. SY had recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet. ABI 1.1, pulses +¼, diminished hair growth, capillary filling time < 3 seconds, TCO2 adequate for healing. BMI 38.4, PreAlbumin: 26.3, Braden Scale 16, Hgb 9.5

The facility staff, OT, PT, PNP, and WOC nurse had modified the seating cushion to be providing pressure reduction when the DTI developed. The cushion was checked everyday by staff when the patient left the room to go to the dining room. The GlideWear® Shear Protection Cushion Cover was obtained in an attempt to prevent further breakdown. There were no other new interventions attempted at that same time.

Wound Measures:

- 0.8 cm X 0.6 cm one week after the implementation of the GlideWear® sock.

Results:

- The introduction of the pair of SFH underwear worn over the diaper did not improve the resolution of the friction and is what healed his IAD and maintained his skin for 5 months. It is no longer requiring pain medications for resolution. He is able to sit up in the chair without crying or becoming combative with cares.
Case #1 Deep Tissue Injury/Stage 2 Pressure Injury

RRS is a 65 y.o. man who resides in a nursing home. He has a history of Bipolar, Dementia with behaviors (refusal of care to include bathing and feeding by the staff). He has a respirator which is what he sleeps in all day and sleeps in at night. He gets out of the chair to take himself to the bathroom and to meals in the dining room. He has a good appetite averaging about 75% of his meals. He is continent of bowel and bladder. He had refused care for about one week when the DTI was noted by the nursing assistant. He had no recent change in condition. After one month this DTI did not make any progress and then developed Stage 2 open areas. RS has never complained of pain in this area. BMI 36.9, PreAlbumin: 26.3, Braden Scale 16, Hgb 9.5

The facility staff, OT, PT, PNP, and WOC nurse had modified the seating cushion to be providing pressure reduction when the DTI developed. The cushion was checked everyday by the staff when the patient left the room to go to the dining room. The GlideWear® Forefoot Protection Cushion Cover was obtained in an attempt to prevent further breakdown. There were no other new interventions attempted at that same time.

Wound Measures:
- Left: 10.5cm x 9cm, open 3.5cm x 1.5cm
- Right: 12cm x 9cm, open 2.0cm x 1.2cm

DTI area was present for 1 month, open areas present for 2 weeks with no change in size.

This lesion depth was present for about 1 month with no improvement or deterioration. He did have 1 pouch wound on the back for that month. He was having a Benadryl cream product applied to the back as he would allow which usually was once per day for a week.

Results:
- There was no obvious friction occurring since this patient did not wear shoes, was not ambulatory and does not move independently
- The dramatic response to RS’s skin by removing the friction was completely unexpected and now gives a more important question: is reducing pressure all we need to do or should we just put as much importance on the reduction of friction at the skin-support surface interface. The results from cases like this certainly make it an important area to research further.

Case #2 Neuropathic Ulcer

JT is a 65 y.o. nursing home resident that developed this wound after his toe hit a table when he was being moved in his geri-chair. He has Type 2 Diabetes, CVA with aphasia and right side paresis. He does have sensation in his legs/feet and is able to respond to pain by pulling his foot away. Appetite is 75%, HgbA1C E3, PreAlbumin: 17.6, Weight 205.4 lbs., Braden Scale 13

Intervention:
- GlideWear®
- Shear Protection Socks

Wound Measures:
- Left: 12cm x 9cm, open 3.5cm x 1.0cm

Area has decreased deep purple coloring This is a picture two weeks later after putting the GlideWear® cushion cover over the pneumatic cushion.

Results:
- There was a decrease in the deep purple area and resolution of the open areas in two weeks.

The dynamic response to JT’s skin by removing the friction was completely unexpected and now gives a more important question: is reducing pressure all we need to do or should we just put as much importance on the reduction of friction at the skin-support surface interface. The results from cases like this certainly make it an important area to research further.

Case #3 Pressure Injury

SY is a 68 y.o. male who resides in a nursing home. He has a history of CVA with dysphagia, COPD, Bipolar, Dementia. SY is bed bound, has a G-tube for tube feedings, Incontinent of bowel and bladder. SY has had a non-healing pressure injury on his left great toe. SY had recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet.

Wound Measures:
- 3.0 cm x 0.5 cm

This was one week after putting the GlideWear® sock.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Case #4 Incontinence Associated Dermatitis

AH is a 44 y.o. male nursing home patient that has a history of Status Epilepticus, Seizure disorder, Herpes Encephalitis, Encephalopathy. He has G-tube for tube feeding. He is Incontinent of bowel and bladder. AH sits in a geri-chair for 1-2 hours at a time and then has mattresses on the floor due to constant moving and crawling. Most of the day he is in constant movement back and forth while in his chair and on the mattress. He responds to pain but does not communicate verbally. The IAD was a very painful condition for this patient. He would cry with skin care treatments and often become combative because of the pain when he was sitting in the chair. He required pain medications during his shower due to the pain.

Wound Measures:
- 3.2 cm x 0.8 cm

This picture is two weeks after the GlideWear® sock was being used daily.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Introduction:
- GlideWear®
- Shear Protection Socks

Wound Measures:
- 3.0 cm x 0.2 cm

This was one week after the GlideWear® sock was introduced.

Results:
- There is an increase in granulation tissue. Decreased depth and increased epithelialization on wound edges.

Wound Measures:
- 1.0 cm x 1.0 cm

This was one week after the GlideWear® sock was introduced.

Results:
- There was no obvious friction occurring since this patient did not wear shoes, was not ambulatory and does not move independently. Consequently, the dramatic response of the GlideWear® sock immediately improved the wound healing of the skin that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Case #5 Pressure Injury

MD is a 78 y.o. male nursing home resident that has a history of CVA with dysphagia, COPD, Bipolar, Dementia. MD is bed bound, has a G-tube for tube feedings, Incontinent of bowel and bladder. MD has had a non-healing pressure injury on his left great toe. MD has recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet.

Wound Measures:
- 3.5 cm x 0.1 cm

This was one week after putting the GlideWear® sock.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Case #6 Pressure Injury

SS is a 93 y.o. male nursing home resident that has a history of CVA with dysphagia, COPD, Bipolar, Dementia. SS is bed bound, has a G-tube for tube feedings, Incontinent of bowel and bladder. SS has had a non-healing pressure injury on his left great toe. SS has recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet.

Wound Measures:
- 3.0 cm x 0.5 cm

This was one week after putting the GlideWear® sock.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Case #7 Pressure Injury

SS is a 93 y.o. male nursing home resident that has a history of CVA with dysphagia, COPD, Bipolar, Dementia. SS is bed bound, has a G-tube for tube feedings, Incontinent of bowel and bladder. SS has had a non-healing pressure injury on his left great toe. SS has recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet.

Wound Measures:
- 3.0 cm x 0.5 cm

This was one week after putting the GlideWear® sock.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.

Case #8 Pressure Injury

SS is a 93 y.o. male nursing home resident that has a history of CVA with dysphagia, COPD, Bipolar, Dementia. SS is bed bound, has a G-tube for tube feedings, Incontinent of bowel and bladder. SS has had a non-healing pressure injury on his left great toe. SS has recurrent great toe redness and open areas. He is able to communicate pain and often complained of pain in his feet.

Wound Measures:
- 3.0 cm x 0.5 cm

This was one week after putting the GlideWear® sock.

Results:
- The implementation of the GlideWear® sock immediately improved the wound healing of this wound that had previously stalled. The great toes had no further redness or new open areas. He no longer complains of pain in his toes.
Results

Case #1 - For a deep tissue injury on the buttock, a SFR seat cushion cover (GlideWear® Shear Protection Wheelchair cushion cover) was used over a commonly used pneumatic seat cushion in addition to all normal wound care protocols and the DTI area decreased and open areas resolved.

Case #2 - For a neuropathic foot ulcer, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols. The use of the SFR sock device reduced the size of the wound and depth. When the sock was not used the wound returned to previous size.

Case #3 - For a pressure injury on the hallux IP a SFR sock device (GlideWear® Forefoot Shear Protection Socks) were used in addition to all normal wound care protocols. The SFR sock decreased the redness and the open area decreased in size.

Case #4 - For Inconvenience Associated Dermatitis (IAD), a SFR device (GlideWear® Shear Protection Underwear) was used in addition to all normal wound care protocols. This patient had recurrent IAD for over one year and was never able to maintain intact skin until using SFR underwear, which was applied over the diaper. IAD is resolved with no recurrence for 6 months since the SFR underwear.

Limitations

Compliance with the products

Discussion/Conclusions

As clinicians we have implemented interventions to eliminate or reduce friction and shear in our practices. These interventions have been limited to reducing friction when moving patients onto or off of a seat or bed support surface by instructing the patient and caregivers to avoid dragging and to lift when transferring and by suggesting the use of transfer aids. There are low friction transfer/transfer aids available and they work well for assisting transfers, but are not functional as a contact loading solution. Transfer aids are expressly task oriented and should not be left in place while a person is sitting or lying for stability/safety reasons. However, we have not had a product that uses SFR technology for contact loading available to us until now. We have four case studies with very different wound etiologies that had dramatic improvement in very short periods of time when implementing this simple technology.

I believe that we have underestimated the effect friction has on the wound healing process. There have never been products, until now, that directly reduce the friction when sitting or lying. The principal theory behind SFR recognizes two things. 1. Friction is the force, coupled with pressure, producing shear in stress (distortion) in tissue. Both forces, always present, pressure and friction, are available to mitigate. 2. Applying a low friction interface focusing on the area of the body where skin damage is, or is at risk of occurring, preserves the otherwise helpful friction in the other areas where skin can tolerate the forces and derive stabilizing benefits or traction. The interface may be worn by the patient, or function as a component of a support surface cover. The SFR approach should not be thought of as a transfer aid to perform a transfer more easily, however, SFR provides very important protection during transfer activities if worn by the patient. Microclimate is another pressure injury causal factor that deserves to be recognized and mitigated, whenever it is a practical possibility, to facilitate air exchange to help control moisture and temperature on the skin surface at the contact interface. The SFR technology used with these cases has properties friendly to microclimate issues. Therefore, the negative effect of friction has never been fully appreciated until the SFR products were utilized in conjunction with our current standards of practice in wound care. I have found that the SFR devices are a crucial intervention to the wound healing process. The response that was demonstrated in these cases has been reproduced numerous times in my clinical practice and the technology will become part of our standard of practice when dealing with pressure injury and Inconvenience Associated Dermatitis.

The Technology

Friction causes shear stress in the load-bearing tissue, and along with pressure and microclimate, is known to cause skin damage. GlideWear®; a dual ply textile technology, places a very low friction interface into a specific portion of a garment, support surface cushion cover or as a prosthetic liner component. This technology employs a concept referred to as “Strategic Friction Reduction” (SFR). SFR targets friction reduction to only the wound area, or the area known to be at risk, providing a more favorable healing and prevention environment. Targeting the area of reduced friction preserves the relatively higher normal friction loads in the other areas where skin can tolerate the stress. This is necessary for preventing pooling, stability, and traction.

Applications using Strategic Friction Reduction (SFR) technology include:

- Socks with forefoot, partial foot, or heel/toe ankle low friction technology installed in at-risk areas
- Undershorts with low friction technology installed in at-risk areas
- Wheelchair cushion covers with low friction technology installed in at-risk areas
- Trans-Iral prosthetic liner patches and trans-Iral protheses/brim sheath
- Pillowcase component

For Neuropathic Foot Conditions, Amputees, Wheelchair Users, Bed Surface Users, IAD, and other conditions where support surfaces are necessary.

References:

1. Thies Berke, C. Pathology and Clinical Presentation of Friction Injuries. Case Series and Literature Review. 2015. /Wound/Conference. 12.41-12.61. Lippincott Williams & Wilkins

Acknowledgement & Contact

No external funding was received for this research. The investigators retained full independence in the conduct of this research.

Low Friction Fabric interventions and custom made socks were received as free trials from Tamarack Habilitation Technologies, Inc.

Contact all authors at Tamarack Habilitation Technologies, Inc.

1670-5th Ave NE, Minneapolis, MN 55449
Email: info@tamarackht.com

GlideWear® is made by Tamarack Habilitation Technologies, Inc. Minneapolis, Minnesota, USA

Using Strategic Friction Reduction to Prevent and Treat Pressure Injuries

By: Sheila Howes-Trammel
MSN, APRN, FNP-BC,
CWPN, CCCN, CFN, CLNC

Hennepin County Medical Center

Abstract

Evidence suggests that friction causes stresses and strains in the tissue of users exposed to prolonged sessions on support surfaces such as wheelchairs and mattresses, leading to increased risk of skin trauma at the surface and in deep tissues. New solutions are needed since simply addressing the ‘pressure factor’ is incomplete. Due to the shearing stress and strain (distortion) that friction causes, a significant contributor to skin trauma. Despite the many products focused on pressure management, there are currently very few interventions addressing friction and shear. This presentation highlights a promising new intervention.

Strategic Friction Reduction (SFR) is the deliberate placement of ultra low friction interface materials to target those areas with wounds or those at risk. SFR interface materials can be built into a user’s garment (such as a sock or underwear) which covers the at risk zone, or into an external surface such as a wheelchair cushion, or a bed linen. SFR manages contact forces in much the same way as done for pressure. These contact forces may be from positioning or sliding support equipment, from beds or other devices, and are also present during any and all transfers. Individuals might not remain in their ideal chairs all at times – what happens to them when they are sitting on other support surfaces such as in a vehicle? Practitioners and users are challenged to reduce the harmful friction and shear forces from these surfaces as well.

This presentation discusses how a new SFR technology works and will discuss the positive effect when using these interventions to reduce friction in four case study examples.

Deep tissue injury, Inconvenience Associated Dermatitis (IAD), neuropathic ulcer and toe pressure ulcer.

Background

Friction causes shear stress and strain in the load-bearing tissue and leads to increased risk of skin trauma – both at the surface and in deep tissues (2). Wound care protocols do not currently include any means for reducing friction other than to suggest avoiding dragging or sliding across surfaces (3). The few interventions that clinicians are aware of address friction and shear are intended for assisting transfers. The author found a new dual ply textile friction reducing technology having an extremely low static coefficient of friction (CoF) located in a specific portion of a garment, cushion cover or a prosthetic socket component. This technology employs a concept referred to as “Strategic Friction Reduction” (SFR). SFR targets the wound area, or the area known to be at risk, and reduces local friction only in that area. This preserves neighboring higher friction loads which cause no harm to the skin and are needed for traction and stability. Because devices and support surfaces function to manage pressure, they should also manage friction to reduce shear stress on the skin and extending into the deeper tissue.

Methods

Strategic Friction Reduction (SFR) devices were employed in addition to all usual wound treatment protocols in 4 subjects.

Case #1 - For a deep tissue injury (DTI) with Stage 2 open areas on the buttock, a SFR seat cushion cover (GlideWear® Shear Protection Wheelchair cushion cover) was used over a commonly used pneumatic seat cushion in addition to all normal wound care protocols

Case #2 - For a right neuropathic foot ulcer, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols

Case #3 - For a pressure injury on the left hallux IP, a SFR sock device (GlideWear® Forefoot Shear Protection Socks) was used in addition to all normal wound care protocols

Case #4 - For Inconvenience Associated Dermatitis (IAD), a SFR garment device (GlideWear® Shear Protection Underwear) was used in addition to all normal wound care protocols